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We consider a two-dimensional problem concerning Cauchy-Poisson waves at 

an inclined shore in the case of an initial disturbance concentrated near the 
shore edge. We study the behavior of the solution near the shore and at large 
distances from it. 

Numerous investigations, devoted to the study of standing and progressive 

waves on an inclined shore, are described in [l]. A two-dimensional problem 
concerning nonstationary waves on a shore with an angle of inclination r = nl 
2n, where n is an integer, was analyzed in [Z, 31. We consider below a case 

in which the angle of inclination is commensurable with .x?,Z, subject to the 
condition that the initial disturbance is concentrated in the vicinity of the 

shore edge, so that the problem may be considered self-similar. 

1. Two-dimensional nonstationary waves on the surface of a heavy fluid are deter- 
mined from solving the following problem : 

AT== 0 (1.1) 

g z+ag =o, y=o 

@ 0 -g=’ y= -xtgy 

The coordinate origin here is located at a point of contact of the free surface with the 

shore, the r-axis is directed along the free surface, and the y-axis vertically upwards. 
As an initial condition, we assign the pressure distribution along the free surface (pl is 
the density) 

cp (2, 0; 0) = p (4 / Pl, dq (5, 0; 0) / dt = 0 

More general initial conditions are also considered. 

2. We consider the problem stated for the case in which the initial disturbance is 

concentrated near the origin and is characterized by a constant A which has the dimen- 
sionality L?’ Tq . 

We seek a solution of problem (1.1) in the form 

cc (2, y; t) = Apgw) (u, cl), u = J&i av/p (2.1) 
p+a+p=2, q-2/+=-1 

Here p and 8 are polar coordinates. The initial condition is formulated later. Substi- 
tution (2.1) into Eqs. (1.1) leads to the relations 

4a2@ - 4au @,'+ u(u&')~ + 4cDe/ = 0, -r<0<0 

400 + (D,*" = 0, 8 = 0; @ = 0, 0 = -y 
(2.2) 



Self--similar problem of Cauchy-Poisson waves at. an inclined shore 983 

we seek a solution of (2.2) in the form 
c+im 

w&~)=~& 1 @*(P, 8)~-paP (E = const>O) (2.3) 
c--im 

Substitution into Eqs.(2.2) gives 

@:(e/zr + (P + w2tift* = 0 (2.4) 

GxJ?* (p, 0) / de -j- (p - f> (p - 2) 0, (p - 2, e) = 0, e = 0 

am’, tp, e) / ae = 0, 8=--y 

The general solution of (2.4) may be represented in one of the following two forms: 

(2.5) 

(2.6) 

Substituting (2.5) into the boundary conditions of (2.4). we obtain the 

5(p)=~,+a*f++!-kn 

II (p + 2) ain [$ + (o + 1) Y] - u (P) 2 (f:iy2, 

eos[~+ay]=O 

Analogous relations, corresponding to (2.6). have the form 

relations 

(2.7) 

X 

The second relation in (2.7) (or in (2.8)) is an equation in finite differences of the 

first order for determining the function U (p) (or U, (p) , respectively). 
Further, we restrict ourselves to the special case a = - 1, f~ = 0, corresponding 

to the initial impulse applied in the neighborho~ of the coordinate origin. Other cases 

can be studied analogously ; moreover, solutions corresponding to other a may be ob- 
tained from the solutions already found by differentiation and integration with respect 

to t. 
The following functions satisfy the second of Eqs. (2.7) for y = n I 2 and y = z , 

respectively : 

U(p)=w(p)I’(~), r=f (2.9) 

Here o (p) is an arbitrary two-periodic function. Its choice signifies the selection of 
an initial condition for cp (2, y; I) namely, the magnitude and plane of application 
of the impulse; in addition, the existence of the integral (2.3) must be guaranteed. 

Let y = nn / 2n, where m and n are relatively prime integers. Here it is more 
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suitable to use Eq. (2.6). The functions 

n-1 

Q = 11 sin%& m==41+1 
h-=0 

w-1 

i2 = n sinXk, m==41+3 
Lo 

(2.10) 

satisfy the second equation of (2.8) . Here o (p) is also an arbitrary two-periodic func- 

tion. Thus we have obtained a family of solutions of the initial problem, each of which 
corresponds to definite values of m and n. As we shall show below, the choice of the 

function w (p) makes it possible to satisfy a wide class of initial conditions. 

3. We pose the condition: the function @* (p, 0) (or the branch of it considered) 
must have at the point p = 0, a first order pole with residue proportional to sin 8. 
It is then found that for small Q 

cp(p,R;O)-y?&- 
x2 + Y2 

It is obvious [4] that for y-+ 0 the function y j 5~ (a? + ya) tends to 6 -function, SO 

that the distribution along the free surface of the initial impulse is proportional to 

6 (P). 
The final solution of the problem concerning Cauchy-Poisson waves, in the case 

of an impulse applied to the free surface for y = n / 2 and y = rt, is obtained ikom 

Eqs. (2.9) by choosing for o (p) the functions (2 fi)-i ctg pz f 2 and (2 fi)-’ 
Ctga pn / 2 ,respectively, It should be noted that for other y values the solutions, 
which are found in the form (2.5), correspond to initial impulses applied in planes in- 
clined to the horizontal. For example, suppose that for y = 7t / 2 in (2.9) we choose 

0 = (2JGFy ctq$c/2. Then for p = 0 the residue is pro~~ional to cos 0 ‘= 

cos (n/2 - e,) = sin 0,,i. e., the impulse is applied to the free surface at a right angle. 
If it be required to solve the problem for an arbitrary y = mn / 2n, in the case of 

an impulse applied to the free surface or at an arbitrary given angle to it, it is sufficient 
to construct a linear combination of two solutions of the form (2.5). which differ by a 
factor having for p =; 0 a first order pole, the coefficients being chosen from the con- 
dition that the residue at the point p = 0 has a given form. 

For example, let y = 3% / 4. Transforming the corresponding expression from 
(2.10) in the manner described, we can obtain the following solution of the initial prob- 
lem satisfying the required conditions for t = 0 on the free surface: 
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IIere 9 (p) is the logarithmic derivative of the r-function and the factor sin-’ px 
is introduced in order that the intergral(2.3) will exist. By completing the contour 

t 

-7 -c 

/ 

of integration in (2.3) so as to form a closed semicircle 

in the left halfplane and applying the theorem on residues, 
we can obtain a representation [ 51 of the solution in the 
form of a series for y = X / 2 

%ffZi It is known from [5] that in problems of the type considered 

\i 

it is sufficient, for a numerical analysis of the Solutions, to 
find, in practically important cases, asymptotic expressions 

for the integrals at large values of U. Below we derive 
corresponding formulas for certain y values when 0 = 0. 

In other cases the calculations are similar, 
Estimates show that for the solutions obtained the abso- 

c lute value of the integrand function in Eq, (2.3) increases 
on lines parallel to the imaginary axis when c > 0 and 

decreases when c < 0 for an increase in IIm p], and 

that it has a minimum on the imaginary axis for large 
1 p 1. Therefore, in calcuIating the integral (2.3) for large 

u , it is natural to take the contour as shown in Fig. 1, pass- 

-Z&i ing through a saddle point, which is to be found for large 

IPI 
Let y = n; / 2. The integral (2.3) can be written in 

the form -c+ioo 

For large \p 1 we can neglect small terms in I, and f, and we can use the asymptotic 
renresentation for I’ [(p + 1) i 2)]. Then (2,3), by substitution of the variables p = 
2zz2t , assumes the form 

The saddle points are located at i and -i , respectively. Calculations show that the 
steepest descent directions make angles of $-n / 4 with the imagina~ axis. The usual 

saddle method formulas lead to the following asymptotic expression [S]: 
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Passing to the case y = X, we note that although the function @* (p, 0) is multi- 

valued, the same reasoning applies as in the case just analyzed since we can consider 

its single-valued branch. The integral (2.3) assumes the form 

An analogous decomposition of the integral into two parts, the use of asymptotic ex- 

pressions for the integrand function, the same substitution of variables, and the ,applica- 
tion of the saddle point method lead to the asymptotic expression 

ln the case y = 3n / 4 , analogous considerations yield the formula 
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Conditions given in [l, 21 for the absence of shocks in the flow in the vicinity 
of the center of a nozzle for two-dimensional vortex-free flows of an ideal 
gas are generalized to the case of rotational flows. Both continuous flows and 

flows with shock waves are constructed. 

1. We take the origin of a Cartesian system of coordinates at the nozzle center, 
with the z-axis directed along the axis of the nozzle and the y-axis perpendicular to 
it. We assume that in the neighborhood of the nozzle center the entropy s (y) is a 


